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The Lady Tasting Tea

Chapter II of Fisher’s The Design of Experiments begins: A lady declares that
by tasting a cup of tea made with milk she can discriminate whether the milk
or the tea infusion was first added to the cup.

I The lady was biologist Muriel Bristol, who worked with Fisher at the Rothamsted
Experimental Station in Harpenden, UK

I H0: Fisher believes that Dr. Bristol cannot taste the difference

I A test of the hypothesis: Experiment consists in mixing eight cups of tea, four in
one way and four in the other, and presenting them to the subject for judgment



Rule 1: do not confound the treatment

I Critical assumption: if Dr. Bristol is unable to detect whether the milk was
poured in first, then she will choose 4 cups at random

I Fisher points out that the experimenter could screw this up: If all those cups made
with the milk first had sugar added, while those made with the tea first had none,
this might well ensure that all those made with sugar should be classed alike

I Gerber and Green refer to this as excludability (or the treatment no correlated with
the potential outcomes)



Rule 2: do not accidentally confound your own treatment

Fisher:It is not sufficient remedy to insist that ‘all the cups must be exactly
alike’ in every respect except that to be tested. For this is a totally impossible
requirement

I To minimize the likelihood of accidentally confounding your treatment, the best
approach is to constrain yourself by randomizing

I Randomization minimizes the likelihood of unfortunate coincidences

I Highly controversial position at the time, and it is still debated in some circles

I The alternative is to force balance on observables, and hope that unobservables
don’t matter



The Lady Tasting Tea: a Hypothesis Test

How should we interpret data from this experiment?

I Suppose Dr. Bristol correctly identified all 4 “treated” cups

I How likely is it that this outcome could have occurred by chance?

I There are
(

8
4

)
= 8!

4!4! = 70 possible ways to choose 4 cups

I Only one is correct; a subject with no ability to discriminate between treated and
untreated cups would have a 1/70 chance of success

I The p-value associated with this outcome is 1/70 ≈ 0.014



The Lady Tasting Tea: a Hypothesis Test

How should we interpret data from this experiment?

I Suppose Dr. Bristol correctly identified 3 “treated” cups

I How likely is it that this outcome could have occurred by chance?

I There are
(

4
3

)
×
(

4
1

)
= 16 possible ways to choose 3 correct cups

I The p-value associated with this outcome is 16/70 ≈ 0.22



The Lady Tasting Tea: a Hypothesis Test

I The only experimental result that would lead to the rejection of the null
hypothesis was correct identification of all 4 treated cups

I In the actual experiment, the null hypothesis was rejected



The Lady Tasting Tea: a Hypothesis Test

I The size of a test is the likelihood of rejecting a true null

I Fisher asserts that tests of size 0.05 are typical

I Alternative experiment: what if we had treated 3 out of 6 cups of tea?

I There are
(

3
6

)
= 20 possible ways to choose 3 of 6 cups

I Best possible p-value is therefore 1
2 = 0.05 (selecting the one correct combination)

I Alternative experiment: what if we had treated 3 out of 8 cups of tea?

I There are
(

3
8

)
= 56

I Best possible p-value is therefore 1
56 = 0.017

I Optimal to have equal numbers of treated, untreated cups (see variance formula
from last lecture)



The Lady Tasting Tea: a Hypothesis Test

I An alternate experiment: an unknown number of treated cups

I Combinations of 8 cups are 28

I Under the null, the probability of getting 8 right is 1 in 28

I Probability of getting 7 right is 8
256 = 0.03125

I Achieve higher power with the same number of trials

I Possible to reject the hypothesis that the lady tasting tea cannot tell the difference
even when her ability to discriminate is imperfect



Randomization inference (RI)

I Elegant precursor to OLS approach to experiments by Neyman (and later by
Fisher) in the 1920s

I Randomization creates a sharp null hypothesis

I By repeating the exact routine by which the original randomization was conducted
many times (e.g., 5,000), we can make inference about variances

I For each placebo treatment assignments calculate the treatment-control difference

I The distribution gives the variation in the treatment/control difference given the way
the experiment was conducted

I Place observed treatment/control differential into this distribution

I If observed difference lies in bottom or top 2.5% of the distribution, reject the
two-sided null at 5% level

I Purest form of RI: Calculate every permutation of the treatment assignment

I Confidence statements become a statement of the relative probability of different
counterfactual outcomes occurring



Advantages of RI

I Allows for calculation of tight error bounds without resorting to asymptotics:
Works well in small samples

I Makes no parametric assumptions about error distributions

I Effective for conducting inference when complex randomization routines were used

I Is it possible that an error or over-restriction in your randomization caused
imbalance?

I Use RI on the randomization that your code could have delivered to understand this

I Are you imbalanced relative to this universe?

I Is this universe itself unbalanced?



Some special cases of RI

I How to use RI to test for a treatment effect other than the null of no effect?

I If the null is that the treatment-control differential is τ0

I Add τ0 on to every treatment-control differential

I Test against this RI distribution

I How to conduct the equivalent of a LATE estimation using RI?

I Maintain the actual cluster-level compliance rate in the re-randomization procedure

I Inflate each treatment-control comparison by the inverse of the observed compliance
differential between the two cells

I Conduct RI on this distribution

I How to conduct covariate adjustment with RI?

I Use regression or other techniques to adjust for covariates

I Then conduct RI using the residuals from these regressions
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Extensive vs. Intensive Margin Effects

I Problem akin to Heckman selection: Treatment effects may have 2 components

1. Extensive margin: A component that works on the likelihood that the outcome is
non-zero (or is observed)

2. Intensive margin: A component that works on the outcome conditional on it being
observed and non-zero

I Experiments provide evidence on the reduced-form combination of these effects

I To disentangle, need separate experimental variation to provide identification on
the extensive margin (instrument for the selection equation in Heckman terms)



Extensive vs. Intensive Margin Effects: Some examples

1. Attrition may be differential in absolute levels

2. Who attrites (differential selection) across the treatment and control.

3. A treatment may effect both the likelihood that individuals are sexually active as
well as the attributes of those with whom they are sexually active

I Cannot examine effect on partner selection in isolation of being active at all
I Same problem as attrition statistically, but extensive margin effects are an intrinsic

and interesting part of the treatment effect

4. Interest rates can be randomized across different clients

I Effect on who complies with the treatment (adverse selection)
I Effect how they perform under the treatment (moral hazard)

5. Treatment may influence the likelihood that someone enters self-employment, as
well as the returns to self-employment if they do

I “Self-employment income” is a censored variable that confounds the intensive and
extensive margin

I What types of people start new businesses, and how large are the new businesses?
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Treatment affects probability of observing outcome

Y ∗
i = Tiβ + Xiπ1 + ui

Z ∗
i = Tiγ + Xiπ2 + εi

Yi = Y ∗
i 1Z∗

i >0

I Both Y ∗
i and Z ∗

i are unobserved

I Even if T is randomized you end up back in a causal inference problem very
closely related to the original Heckman formulation of selection bias

I If treatment does not affect observability of the dependent variable you have no
problem. You have a correct (L)ATE on those who would anyway have had Z ∗

i > 0

I If you have an instrument for Z ∗
i , you use a Heckman-type estimator
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Attrition Propensity Weights

I If Z⊥Y then attrition increases standard errors, but will not introduce bias

I But Z⊥Y is unlikely, instead sometimes you can argue Z⊥Y |X

I In this case you can use the coefficients from

Zi = Xiγ + εi

I To predict the propensity not to attrite for all units: Ẑi

I Run original regression with weights 1

Ẑi

I If likelihood of attrition, conditional on X, is zero, then Ẑi = 1

I If likelihood of attrition, conditional on X, is zero, then Ẑi = 0.5

I Attrition analogy to selection on observables in matching estimators



Beyond the basics

Randomization inference

Extensive vs. Intensive Margin Effects
Attrition
Attrition Propensity Weights
Bounding Approaches
Lee (Bounding)
Observing Unobservables

Factorial Designs



Horowitz and Manski (2000)

I Horowitz and Manski (2000) suggest imputing the missing values with the
opposite extremes of the potential values of the dependent variable.

I Can work relatively well if Y is binary, but not otherwise



Zhang, Rubin, and Mealli (2007): ”Principal Stratification”

I Problem: Don’t observe outcomes unless the unit undertakes some action

I Classify participants into four groups according to whether they would be
observed or not in the treatment and in the control

I Divide individual-level counterfactual by decision under (T,C) status

I (N,N) are never observed (we never observe the variable for them)

I (O,N) are observed only in the control: assume this group doesn’t exist for now

I (N,O) are observed only if treated (exist in our sample, source of selection problem)

I (O,O) Observed whether or not treated



Zhang, Rubin, and Mealli (2007): ”Principal Stratification”

I The intensive margin effect is only defined for those who would have been
observed in the treatment and in the control (O,O)

I Given that you were going to undertake observable behavior no matter what, how
did the treatment change your behavior?

I Difference in means between treated and control confounds effect on (N,O) and
(O,O)

I Marginal effect of treatment on (N,N) is undefined

I Marginal effect of treatment on (N,O) is potentially meaningful, but due to
selection hard to establish without assumptions (e.g., effect the same as (O,O))
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Lee (2009) Bounding

I Lee (2009): Baseline variables related to employment probability could also
determine wage rates

I Deals with unequal attrition between treatment and control

I Bounding technique identifies the logical worst case scenarios for how much the
difference in the probability of observing the dependent variable can possibly
affect the mean of the dependent variable conditional on it being observed



Lee (2009) Bounding

I Rank the outcomes for the control in order of the outcome itself

I Outcome is observed for p% of the treatment and q% of the controls

I Assume p% > q% (symmetric in the other case). Differential attrition is (q− p)%

I Two estimates by trimming the tails of the distribution of observed outcomes in
the control:

I max(E (Y |T = 0) is the average outcome in the control eliminating the (q − p)% of
lowest outcomes

I min(E (Y |T = 0) is the average outcome in the control eliminating the (q − p)% of
highest outcomes

I The upper and lower Lee bounds are then given by

I E (Y |T = 1)−max(E (Y |T = 0) (lower bound)

I E (Y |T = 1)−min(E (Y |T = 0) (upper bound)



Lee (2009) Bounding

I Assume you have a treatment that affects sexual behavior

I 50% of control units are in relationships and 40% of treatment units are

I Average age in all treatment relationships is 20, and in all control relationships is 18

I Some of that difference may come from a treatment effect, and some from selection

I 20% of controls would have selected out of sexual activity if treated

I How big could the intensive treatment effect on the regularly sexually active be?

I Take 80% of controls with the oldest partners and 80% with the youngest partners

I Use these two groups as counterfactuals

I The marginal effect of the program on the sexualy active group must lie in between
these two values (these are the most extreme differences that selection could explain)
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Observing Unobservables

I Karlan and Zinman ’Observing Unobservables’

I Degree to which increasing interest rates on loans generates adverse (or
advantageous) selection and moral hazard

I Randomize the interest rate offered to potential borrowers

I Differences in the subsequent performance of borrowers depending on this interest
rate offer then gives the AS effect

I Once a borrower has come in to take the loan, they then randomize downward
from the offer rate the actual rate charged on the loan

I Conditional on the offer rate, this variation in the actual rate isolates MH



Observing Unobservables
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Factorial (or cross-cutting) experimental designs

I Widely used in field (and lab) experiments

I Rationale:

I Budget constraints

I Interaction effects are often considered a second order issue

Conducting a series of evaluations in the same area allows substantial cost
savings. Since data collection is the most costly element of these evaluations,
cross-cutting the sample reduces costs dramatically. (Kremer AER P&P, 2003)
...This tactic can be problematic, however, if there are significant interactions
between programs. (ibid)
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Typical 2×2 design

T1

No Yes

T2
No N1 N2

Yes N3 N4

Long model: Y = β0 + β1T1 + β2T2 + β12T1 × T2 + ε (1)

Short model: Y = βs0 + βs1T1 + βs2T2 + εs (2)

Three approaches:

1. Estimate and report (1)

2. Estimate and report (2)

3. Estimate (1); test for β12 = 0 in (1) and estimate and focus on (2) if β12 = 0 is
not rejected (model selection)
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Regression: long and short

Y = β0 + β1T1 + β2T2 + β12T1 × T2 + ε,

Y = βs0 + βs1T1 + βs2T2 + εs

Long model (OLS):

β̂1
p→ β1 (main effect of T1)

β̂2
p→ β2 (main effect of T2)

β̂12
p→ β12 (interaction effect)

Short model (OLS):

β̂s1
p→ βs1 = β1 + β12P(T2 = 1)

β̂s2
p→ βs2 = β2 + β12P(T1 = 1)
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Running example based on a prototypical setting

I 2×2 design with N1 = N2 = N3 = N4 = 250 (N = 1, 000)

I DGP:
Yi = β1T1i + β2T2i + β12T1iT2i + εi , εi ∼ N(0, 1),

I T1i and T2i are randomly assigned: P(T1i = 1) = P(T2i = 1) = 0.5

I Short model: 90% power to detect an effect of 0.2σ at the 5% level

I Long model: 90% power to detect an effect of 0.29σ at the 5% level

I Monte Carlo simulations to assess the rejection rates of different procedures under
the null (size) and the alternative (power)



Trade-off: Size distortion if β12 6= 0
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Trade-off: Power gains if β12 = 0
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Three problems with the short model

I Affects internal validity of experimental estimates

I Policy discussions assume a “business as usual” counterfactual

I Papers written as if estimating main effects (β1 as opposed to βs
1)

I Often, βs
1 = β1 + β12P(T2 = 1) is neither of academic nor policy relevance

I Problem can be re-cast as “external validity”, but not very satisfying
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Model selection

I In practice, researchers often employ a two-step procedure

1. Pre-test: estimate the long model and test H0 : β12 = 0

2. Post-selection inference:

a If reject H0 : β12 = 0, use t-test based on the long model

b If cannot reject H0 : β12 = 0, estimate short model and use t-test based on short
model

I Does not work

I True in general (Leeb & Pötscher in several papers)

I Particularly problematic since most experiments are not powered to detect
interactions
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Power

● ● ● ● ● ●
●

●
● ● ● ● ●

β12

P
ro

ba
bi

lit
y 

of
 r

ej
ec

tin
g 

H
0

:β
1=

0

● Long
Short
Model selection

N=1,000
β1=0.2
β2=00.0

0.2

0.4

0.6

0.8

1.0

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Different sample sizes



There is no free lunch

I Perceived power gains from the short model come at the cost of false positives in
inference on β1

I Or come at the cost of a more complicated interpretation of the estimand:
βs1 = β1 + β12P(T2 = 1)
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Recommendations

I Transparency (design and reporting)

I Always include a figure with the full design

I (In most cases) report the long model

I Model selection does not work

I Rationale for the short model should never be that β12 is insignificant

I In some cases, the short model and βs1 may be fine

(i) But should be committed to in a pre-analysis plan (with rationale)

(ii) Be explicit about interpretation and allow readers to assess whether the other
treatments can be interpreted as “background” variables

I For the design of new policy experiments we recommend leaving the interaction
cells empty when

(i) The “business as usual” counterfactual is especially important

(ii) The interactions are not of primary interest
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